236 research outputs found

    Tree Projections and Structural Decomposition Methods: Minimality and Game-Theoretic Characterization

    Full text link
    Tree projections provide a mathematical framework that encompasses all the various (purely) structural decomposition methods that have been proposed in the literature to single out classes of nearly-acyclic (hyper)graphs, such as the tree decomposition method, which is the most powerful decomposition method on graphs, and the (generalized) hypertree decomposition method, which is its natural counterpart on arbitrary hypergraphs. The paper analyzes this framework, by focusing in particular on "minimal" tree projections, that is, on tree projections without useless redundancies. First, it is shown that minimal tree projections enjoy a number of properties that are usually required for normal form decompositions in various structural decomposition methods. In particular, they enjoy the same kind of connection properties as (minimal) tree decompositions of graphs, with the result being tight in the light of the negative answer that is provided to the open question about whether they enjoy a slightly stronger notion of connection property, defined to speed-up the computation of hypertree decompositions. Second, it is shown that tree projections admit a natural game-theoretic characterization in terms of the Captain and Robber game. In this game, as for the Robber and Cops game characterizing tree decompositions, the existence of winning strategies implies the existence of monotone ones. As a special case, the Captain and Robber game can be used to characterize the generalized hypertree decomposition method, where such a game-theoretic characterization was missing and asked for. Besides their theoretical interest, these results have immediate algorithmic applications both for the general setting and for structural decomposition methods that can be recast in terms of tree projections

    Tractable Optimization Problems through Hypergraph-Based Structural Restrictions

    Full text link
    Several variants of the Constraint Satisfaction Problem have been proposed and investigated in the literature for modelling those scenarios where solutions are associated with some given costs. Within these frameworks computing an optimal solution is an NP-hard problem in general; yet, when restricted over classes of instances whose constraint interactions can be modelled via (nearly-)acyclic graphs, this problem is known to be solvable in polynomial time. In this paper, larger classes of tractable instances are singled out, by discussing solution approaches based on exploiting hypergraph acyclicity and, more generally, structural decomposition methods, such as (hyper)tree decompositions

    Ride Sharing with a Vehicle of Unlimited Capacity

    Get PDF
    A ride sharing problem is considered where we are given a graph, whose edges are equipped with a travel cost, plus a set of objects, each associated with a transportation request given by a pair of origin and destination nodes. A vehicle travels through the graph, carrying each object from its origin to its destination without any bound on the number of objects that can be simultaneously transported. The vehicle starts and terminates its ride at given nodes, and the goal is to compute a minimum-cost ride satisfying all requests. This ride sharing problem is shown to be tractable on paths by designing a O(h*log(h)+n) algorithm, with h being the number of distinct requests and with n being the number of nodes in the path. The algorithm is then used as a subroutine to efficiently solve instances defined over cycles, hence covering all graphs with maximum degree 2. This traces the frontier of tractability, since NP-hard instances are exhibited over trees whose maximum degree is 3

    Tree Projections and Structural Decomposition Methods: The Power of Local Consistency and Larger Islands of Tractability

    Full text link
    Evaluating conjunctive queries and solving constraint satisfaction problems are fundamental problems in database theory and artificial intelligence, respectively. These problems are NP-hard, so that several research efforts have been made in the literature for identifying tractable classes, known as islands of tractability, as well as for devising clever heuristics for solving efficiently real-world instances. Many heuristic approaches are based on enforcing on the given instance a property called local consistency, where (in database terms) each tuple in every query atom matches at least one tuple in every other query atom. Interestingly, it turns out that, for many well-known classes of queries, such as for the acyclic queries, enforcing local consistency is even sufficient to solve the given instance correctly. However, the precise power of such a procedure was unclear, but for some very restricted cases. The paper provides full answers to the long-standing questions about the precise power of algorithms based on enforcing local consistency. The classes of instances where enforcing local consistency turns out to be a correct query-answering procedure are however not efficiently recognizable. In fact, the paper finally focuses on certain subclasses defined in terms of the novel notion of greedy tree projections. These latter classes are shown to be efficiently recognizable and strictly larger than most islands of tractability known so far, both in the general case of tree projections and for specific structural decomposition methods

    Group reasoning in social environments

    Full text link
    While modeling group decision making scenarios, the existence of a central authority is often assumed which is in charge of amalgamating the preferences of a given set of agents with the aim of computing a socially desirable outcome, for instance, maximizing the utilitarian or the egalitarian social welfare. Departing from this classical perspective and inspired by the growing body of literature on opinion formation and diffusion, a setting for group decision making is studied where agents are selfishly interested and where each of them can adopt her own decision without a central coordination, hence possibly disagreeing with the decision taken by some of the other agents. In particular, it is assumed that agents belong to a social environment and that their preferences on the available alternatives can be influenced by the number of “neighbors” agree- ing/disagreeing with them. The setting is formalized and studied by modeling agents’ reasoning capabilities in terms of weighted propositional logics and by focusing on Nash-stable solutions as the prototypical solution concept. In particular, a thoroughly computational complexity analysis is conducted on the problem of deciding the existence of such stable outcomes. Moreover, for the classes of environments where stability is always guaranteed, the convergence of Nash dynamics consisting of sequences of best response updates is studied, too

    Detecting and repairing anomalous evolutions in noisy environments: logic programming formalization and complexity results

    Get PDF
    In systems where agents are required to interact with a partially known and dynamic world, sensors can be used to obtain further knowledge about the environment. However, sensors may be unreliable, that is, they may deliver wrong information (due, e.g., to hardware or software malfunctioning) and, consequently, they may cause agents to take wrong decisions, which is a scenario that should be avoided. The paper considers the problem of reasoning in noisy environments in a setting where no (either certain or probabilistic) data is available in advance about the reliability of sensors. Therefore, assuming that each agent is equipped with a background theory (in our setting, an extended logic program) encoding its general knowledge about the world, we define a concept of detecting an anomaly perceived in sensor data and the related concept of agent recovering to a coherent status of information. In this context, the complexities of various anomaly detection and anomaly recovery problems are studied.IFIP International Conference on Artificial Intelligence in Theory and Practice - Agents 1Red de Universidades con Carreras en Informática (RedUNCI
    • …
    corecore